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Abstract

Cluster analysis is the automated search for groups of related observations in a data set.
Most clustering done in practice is based largely on heuristic but intuitively reasonable
procedures and most clustering methods available in commercial software are also of this
type. However, there is little systematic guidance associated with these methods for solving
important practical questions that arise in cluster analysis, such as “How many clusters
are there?”, “Which clustering method should be used?” and “How should outliers be
handled?”. We outline a general methodology for model-based clustering that provides a
principled statistical approach to these issues. We also show that this can be useful for other
problems in multivariate analysis, such as discriminant analysis and multivariate density
estimation. We give examples from medical diagnosis, minefield detection, cluster recovery
from noisy data, and spatial density estimation. Finally, we mention limitations of the
methodology, and discuss recent developments in model-based clustering for non-Gaussian
data, high-dimensional datasets, large datasets, and Bayesian estimation.
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1 Introduction

Cluster analysis is the identification of groups of observations that are cohesive and separated
from other groups. Interest in clustering has increased recently due to the emergence of
several new areas of application. These include datamining, which started from the search
for groupings of customers and products in massive retail datasets, document clustering and
the analysis of Web use data, gene expression data from microarrays, where one goal is
to find of genes that act together, and image analysis, where clustering is used for image
segmentation and quantization.

Most clustering done in practice is based largely on heuristic but intuitively reasonable
procedures, and most clustering methods available in commercial statistical software are also
of this type. One widely-used class of methods involves hierarchical agglomerative clustering,
in which two groups, chosen to optimize some criterion, are merged at each stage of the
algorithm. Popular criteria include the sum of within-group sums of squares (Ward 1963),
and the shortest distance between groups, which underlies the single-link method. Another
common class of methods is based on iterative relocation, in which data points are moved
from one group to another until there is no further improvement in some criterion. Iterative
relocation with the sum of squares criterion is often called k£ means clustering (MacQueen
1967). Although there has been considerable research in this area (e.g. dendogram analysis
for hierarchical clustering), there is little systematic guidance associated with these methods
for solving basic practical questions that arise in cluster analysis, such as “How many clusters
are there?”, “Which clustering method should be used?” and “How should outliers be
handled?”. Moreover, the statistical properties of these methods are generally unknown,
precluding the possibility of formal inference.

It was realized early on cluster analysis can also be based on probablility models (see
Bock 1996, 1998 for a survey). This realization has provided insight into when a particularly
clustering method can be expected to work well (i.e. when the data conform to the model),
and has led to the development of new clustering methods. It has also been shown that
some of the most popular heuristic clustering methods are approximate estimation methods
for particular probability models. For example, standard k£ means clustering and Ward’s
method are equivalent to known procedures for approximately maximizing the multivariate
normal classfication likelihood when the covariance matrix is the same for each component
and proportional to the identity matrix.

Finite mixture models have often been proposed and studied in the context of clus-
tering (Wolfe 1963, 1965, 1967, 1970; Edwards and Cavalli-Sforza 1965; Day 1969; Scott
and Symons 1971; Duda and Hart 1973; Binder 1978). More recently, it has been recognized



that these models can provide a principled statistical approach to the practical questions that
arise in applying clustering methods (McLachlan and Basford 1988; Banfield and Raftery
1993; Cheeseman and Stutz 1995; Fraley and Raftery 1998). In finite mixture models, each
component probability distribution corresponds to a cluster. The problems of determining
the number of clusters and of choosing an appropriate clustering method can be recast as
statistical model choice problems, and models that differ in numbers of components and/or
in component distributions can be compared. Outliers are handled by adding one or more
components representing a different distribution for outlying data.

In this paper we describe and review a methodological framework that underlies a power-
ful approach not just to cluster analysis, but also to some other basic problems of multivariate
statistics — discriminant analysis and multivariate density estimation. This strategy arose
from the demonstrated promise in clustering applications of two methods based on multi-
variate normal mixture models with covariances parametrized by eigenvalue decomposition.
These methods are hierarchical agglomeration based on the classification likelihood (Murtagh
and Raftery 1984; Banfield and Raftery 1993), and the EM algorithm for maximum like-
lihood estimation of multivariate mixture models (McLachlan and Basford 1988; Celeux
and Govaert 1995). The two approaches are complementary: model-based hierarchical ag-
glomeration tends to produce reasonably good partitions even when started without any
information about the groupings, while inititialization is critical in EM since the likelihood
surface tends to have multiple modes, although EM typically produces improved partitions
when started from reasonable ones. By initializing the EM iteration with partitions from
model-based hierarchical agglomeration and using approximate Bayes factors with the BIC
approximation (Schwarz 1978) to determine the number of groups present in the data, Das-
gupta and Raftery (1998) achieved good results for some difficult problems in minefield and
seismic fault detection. Their algorithm was extended by Fraley and Raftery (1998) to select
the parametrization of the model as well as the number of clusters simultaneously using the
BIC.

Figure 1la shows the two-group model-based classification of a data set used for breast
cancer diagnosis (Magasarian et al. 1995). Although no information about the known malig-
nant vs. benign classifications was used by the clustering method, and there is considerable
overlap between the two groups, model-based clustering produced a partition that is nearly
95% correct. Figure 1b shows 280 additional data points classified by discriminant analysis
with a model-based method described in this paper, which makes use of the known classifi-
cations of the UCI data. Nearly 96% of these new data points are correctly classified by this
procedure. This data set is discussed in more detail in Section 8.1.

This paper reviews the model-based approach to clustering, and shows how it can also
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Figure 1: (a) A Projection of the UCI Wisconsin Diagnostic Breast Cancer Data Showing the
Two-Group Model-Based Classification. The ellipses shown are projections of the ellipsoids defined
by the covariances of the two multivariate normal components in the mixture model fitted to
the data. There are 569 observations. Although no information about the known malignant vs.
benign classifications is used by the clustering method, and there is considerable overlap between
the two groups, model-based clustering produces a partition that is nearly 95% correct. (b) A
Projection of 280 Additional Observations. This shows the classification produced by the EM-
based discriminant analysis technique of Section 6.2, using the UCI Wisconsin Diagnostic Breast
Cancer Data as a training set. Circles represent benign observations; triangles malignant ones.
Filled symbols represent misclassified observations. The resulting out-of-sample classification is
nearly 96% correct.



be applied in discriminant analysis and multivariate density estimation. The organization
is as follows. Section 2 is a discussion of mixture models, including the multivariate normal
model and the geometric interpretation of its parametrization by eigenvalue decomposition.
The EM iteration for maximum likelihood estimation and its specialization to mixtures is
the topic of Section 3. Section 4 gives background on Bayes factors, their approximation via
BIC, and their use for selecting the number of clusters and the clustering model. Section
5 describes the overall clustering methodology that combines hierarchical agglomeration,
EM and BIC. Section 6 shows how these ideas can be applied to discriminant analysis, and
Section 7 does the same for multivariate density estimation. Examples illustrating these
methods are given in Section 8. Section 9 gives sources for model-based clustering software.
Section 10 discusses some limitations of the method and suggests extensions to overcome

them, including strategies for large data sets.

2 Mixture Models

Given data y with independent multivariate observations yi,...,y,, the likelihood for a

mixture model with G components is

n G
Loix(01,-. 061,16 | y) =TI D mfe(yi | Ok), (1)

i=1k=1
where f; and 6, are the density and parameters, respectively, of the kth component in
the mixture, and 7 is the probability that an observation belongs to the kth component
(Tk > 05 21?21 Tk = 1)-

Most commonly, fr is the multivariate normal (Gaussian) density @, parametrized by

its mean p and covariance matrix Xg:

exp {—1(yi — )55 (vi — 1) }

¢ (yi | o aE ) =
’ o det(27%y)

(2)
Data generated by mixtures of multivariate normal densities are characterized by groups
or clusters centered at the means pu;, with increased density for points nearer the mean.
The corresponding surfaces of constant density are ellipsoidal. Geometric features (shape,
volume, orientation) of the clusters are determined by the covariances ¥, which may also
be parametrized to impose cross-cluster constraints. Common instances include X, = A,
where all clusters are spherical and of the same size; >; = X constant across clusters, where
all clusters have the same geometry but need not be spherical (Friedman and Rubin, 1967);
and unrestricted Y, where each cluster may have a different geometry (Scott and Symons,

1971). For ¥ = A only one parameter is needed to characterize the covariance structure
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of the mixture, while d(d + 1)/2 and G(d(d + 1)/2) parameters are required for constant X
and unrestricted Y, respectively, if the data are d-dimensional.

Banfield and Raftery (1993) proposed a general framework for geometric cross-cluster
constraints in multivariate normal mixtures by parametrizing covariance matrices through

eigenvalue decomposition in the following form:
Yk = M Dy Ar Dy, (3)

where D, is the orthogonal matrix of eigenvectors, Ay is a diagonal matrix whose elements
are proportional to the eigenvalues, and )\ is an associated constant of proportionality. Their
idea was to treat \;, A; and D, as independent sets of parameters, and either constrain them
to be the same for each cluster or allow them to vary among clusters. When parameters
are fixed, clusters will share certain geometric properties: Dj governs the orientation of
the kth component of the mixture, A its shape, and \; its volume, which is proportional
to A4 det(Ay). For example, if the largest eigenvalue of ¥ is much larger than the other
eigenvalues, the k-th cluster will be concentrated close to a line in d-space, which will be the
first principal component of the distribution of the k-th group. Similarly, if the two largest
eigenvalues are of the same magnitude and dominate the other eigenvalues, the k-th cluster
will be concentrated close to a plane in d-space. The k-th cluster will be roughly spherical
if the largest and smallest eigenvalues of 3 are of the same magnitude.

This approach generalizes the work of Murtagh and Raftery (1984), who used the equal
shape/equal volume model (3 = ADyAD]) for clustering in character recognition and
other situations involving thin, highly linear, and possibly overlapping clusters with different
orientations. It also subsumes the three most common models — AI, equal variance, and
unconstrained variance — mentioned above, as well as other useful models, such as ¥ = A1
where the clusters are spherical, but with different volumes, and ¥, = A;Ag, where all
covariances are diagonal but otherwise their shapes, sizes, and orientations are allowed to
vary. For an extensive enumeration of possible models resulting from (3), see Celeux and
Govaert (1995).

Other parsimonious parametrizations of covariance matrices have been proposed that
could be applied in the context of cluster analysis. These include the intra-class correlation
or one-factor model, in which all the off-diagonal elements of the correlation matrix are equal,
generalizations of this based on factor analysis and structural equations (e.g. Joreskog 1973;
Bollen 1989), autoregressive and other parametrizations common in time series (Box and
Jenkins 1976), and models common in geostatistics in which covariances are functions of
distance (e.g. Journel and Huijbrechts 1978), either in a Euclidean or a deformed space
(Sampson and Guttorp 1992).



3 The EM Iteration for Mixture Models

The EM (Expectation-Maximization) algorithm (Dempster, Laird and Rubin 1977; McLach-
lan and Krishnan 1997) is a general approach to maximum-likelihood estimation for problems
in which the data can be viewed as consisting of n multivariate observations x; recoverable
from (y;,z;), in which y; is observed and z; is unobserved. If the x; are independent and
identically distributed (iid) according to a probability distribution f with parameters 6, then
the complete-data likelihood is

Lo(x; | 0) = ﬁlf(xi | 6).

Further, if the probability that a particular variable is unobserved depends only on the
observed data y and not on z, then the observed data likelihood, L, (y | ), can be obtained
by integrating z out of the complete data likelihood,

Lo(y|8) = /[,C(x 1 6) dz. (4)

The MLE for # based on the observed data maximizes L,(y | 6).

The EM algorithm alternates between two steps, an ‘E-step’, in which the conditional
expectation of the complete data loglikelihood given the observed data and the current
parameter estimates is computed, and an ‘M-step’ in which parameters that maximize the
expected loglikelihood from the E-step are determined. The unobserved portion of the data
may involve values that are missing due to nonresponse and/or quantities that are introduced
in order to reformulate the problem for EM. Under fairly mild regularity conditions, EM can
be shown to converge to a local maximum of the observed-data likelihood (e.g. Dempster,
Laird and Rubin 1977; Boyles 1983; Wu 1983; McLachlan and Krishnan 1997). Although
these conditions do not always hold in practice, the EM iteration has been widely used for
maximum likelihood estimation for mixture models with good results.

In EM for mixture models, the “complete data” are considered to be x; = (y;, z;), where

z; = (%1, - -, Zic) is the unobserved portion of the data, with

(5)

~_ ] 1 ifx; belongs to group k&
E=Y 00 otherwise.

Assuming that each z; is independent and identically distributed according to a multinomial

distribution of one draw from G categories with probabilities 7, ..., 7¢, and that the density

of an observation y; given z; is given by [1S_, fi(y: | 0x)%*, the resulting complete-data
loglikelihood is

n G
Ok, Ty zit | X) =Y D zik log [1i fi(yi | Ok)] - (6)

i=1 k=1

6



The E-step of the EM iteration for mixture models is given by

e fre(yi | Ok)

zAik: — N ~ )
S5y Tifi(vi | 65)

(7)

while the M-step involves maximizing (6) in terms of 7, and 6 with z; fixed at the values
computed in the E-step, Zj. The value 23, of Z; at a maximum of (1) is the estimated
conditional probability that observation i belongs to group k. The maximum-likelihood
classification of observation i is {m : 2} = maxy 2}, }, so that (1 — maxy z};) is a measure of
the uncertainty in the classification (Bensmail et al., 1997).

For multivariate normal mixtures, the E-step is given by (7) with f; replaced by ¢y as
defined in (2), regardless of the parametrization. For the M-step, estimates of the means
and probabilities have simple closed-form expressions involving the data and Z;; from the
E-step: A

LYy Lt LY S = s (8)
n ng part
Computation of the covariance estimate S depends on its parametrization. For details of
the M-step for ¥, parametrized by the eigenvalue decomposition (3), see Celeux and Govaert
(1995).

EM estimation for mixture models has a number of limitations. First, the rate of conver-
gence can be slow. However, EM typically gives good results if the data conform reasonably
well to the model and the iteration is started at reasonable values. Second, the EM iteration
for multivariate normal mixtures breaks down when the covariance associated with one or
more components is singular or nearly singular. It may either fail or give inaccurate results
if one or more clusters contain only a few observations (which can happen if there are too
many components in the mixture), or if the observations they contain are concentrated close
to a linear subspace of lower dimension than the data.

A variant of EM called classification EM or CEM (Celeux and Govaert 1992), in which
the Z;; are converted to a discrete classification before performing the M-step, is equivalent
to standard k& means clustering (MacQueen 1967) when a uniform spherical Gaussian dis-
tribution is used as the probability model. It should be noted that CEM is a procedure for
maximizing the classification likelihood (10) discussed in Section 5.1 rather than the mixture
likelihood (Celeux and Govaert 1993).

4 Model Selection

Two basic issues arising in applied cluster analysis are selection of the clustering method and

determination of the number of clusters. In the mixture modeling approach, these questions

7



reduce to a single concern, that of model selection. Recognizing that each combination of a
number of groups and a clustering model corresponds to a different statistical model for the
data allows simultaneous selection of the number of groups and the clustering model. The
problem then reduces to comparison among the members of a set of possible models.

There are tradeoffs between the choice of the number of clusters and that of the clus-
tering model. If a simpler model is used, more clusters may be needed to provide a good
representation of the data. If a more complex model is used, fewer clusters may suffice. As a
simple example, consider the situation where there is a single Gaussian cluster whose covari-
ance matrix corresponds to a long, thin, ellipsoid. If a model with equal-volume spherical
components (the model underlying Ward’s method and k& means) were used to fit this data,
more than one hyperspherical cluster would be needed to approximate the single elongated

ellipsoid.

Our approach to the problem of model section in clustering is based on Bayesian model
selection, via Bayes factors and posterior model probabilities (e.g. Kass and Raftery 1995).
The basic idea is that if several models, M, ..., Mg, are considered, with prior probabilities
p(My), k = 1,..., K (often taken to be equal), then by Bayes’s theorem the posterior
probability of model M; given data D is proportional to the probability of the data given

model My, times the model’s prior probability, namely
p(My|D) o< p(D|Mj)p(My).

When there are unknown parameters, then, by the law of total probability, p(D|My) is

obtained by integrating (not maximizing) over the parameters, i.e.

p(DIMy) = [ p(DIoh, My)p(0h| M)y,

where p(0;|M) is the prior distribution of 6, the parameter vector for model M. The
quantity p(D|My) is known as the integrated likelihood of model M.

A natural Bayesian approach to model selection is then to choose the model that is
most likely a posteriori, and if the prior model probabilities, p(My), are the same, this
amounts to choosing the model with the highest integrated likelihood. For comparing two
models, M; and Ms, the Bayes factor is defined as the ratio of the two integrated likelihoods,
Bis = p(D|M;)/p(D|M,), with the comparison favoring M; if Bis > 1, and conventionally
being viewed as providing very strong evidence for M; if By > 100 (Jeffreys 1961). Often,
values of 2log(Bis) rather than Bj, are reported, and on this scale, rounding, very strong
evidence corresponds to a threshold of 10 (Kass and Raftery 1995).

This approach is appropriate in the present context because it applies when there are

more than two models, and can be used for comparing nonnested models. In addition to



being a Bayesian solution to the problem, it has some desirable frequentist properties. For
example, if one has just two models and they are nested, then basing model choice on the
Bayes factor minimizes the total error rate, which is the sum of the Type I and Type II error
rates (Jeffreys 1961).

The main difficulty in the use of Bayes factors is the evaluation of the integral that defines
the integrated likelihood. For regular models, the integrated likelihood can be approximated

simply by the Bayesian Information Criterion or BIC:
2logp(D|My) =~ 2logp(D|ék, My,) — vglog(n) = BICy, 9)

where v, is the number of independent parameters to be estimated in model M (Schwarz
1978; Haughton 1988). This approximation is particularly good when a unit information
prior is used for the parameters, that is, a prior that contains the amount of information
provided on average by one observation (Kass and Wasserman 1995; Raftery 1995). The
reasonableness of this prior is discussed by Raftery (1999).

Finite mixture models do not satisfy the regularity conditions that underly the published
proofs of (9), but several results suggest its appropriateness and good performance in the
model-based clustering context. Leroux (1992) showed that basing model selection on a
comparison of BIC values will not underestimate the number of groups asymptotically, while
Keribin (1998) showed that BIC is consistent for the number of groups. Roeder and Wasser-
man (1997) showed that if a mixture of (univariate) normals is used for one-dimensional
nonparametric density estimation, using BIC to choose the number of components yields
a consistent estimator of the density. Finally, in a range of applications of model-based
clustering, model choice based on BIC has given good results (Campbell et al. 1997, 1999;
DasGupta and Raftery 1998; Fraley and Raftery 1998; Stanford and Raftery 2000).

Several other approaches to choosing the number of clusters in model-based clustering
have been proposed. McLachlan and Basford (1988) discuss the use of resampling in this
context. Banfield and Raftery (1993) derived an approximation to the integrated likelihood
based on the classification likelihood, called the AWE, but in subsequent experiments it
has consistently performed less well than BIC. Cheeseman and Stutz (1995) and Chickering
and Heckerman (1997) use a different approximation to the integrated likelihood; other
approaches include an informational complexity criterion called ICOMP (Bozdogan 1994),
an entropy criterion called NEC (Celeux and Soromenho 1996; Biernacki et al. 1999), the
integrated classification likelihood (Biernacki et al. 2000), and cross-validated likelihood
(Smyth 2000). These methods were developed for choosing the number of clusters, but
presumably they could be either applied or extended to choose the clustering model as well.

The performances of some of these criteria are compared in Biernacki and Govaert (1999).



Bensmail et al. (1997) discuss an alternative approximation to the integrated likelihood for
choosing both the number of groups and the clustering model based on Markov chain Monte

Carlo estimation of the models.

5 Cluster Analysis

The purpose of cluster analysis is to classify data of previously unknown structure into
meaningful groupings. In this section we outline a strategy for cluster analysis based on
mixture models. The parametrization (3) is used as the basis for a class of models that is
sufficiently flexible to accomodate data with widely varying characteristics. The strategy
consists of three core elements: initialization via model-based hierarchical agglomerative
clustering, maximum likelihood estimation via the EM algorithm, and selection of the model

and the number of clusters using approximate Bayes factors with the BIC approximation.

5.1 Model-based Hierachical Clustering

Model-based hierarchical agglomerative clustering is an approach to computing an approxi-

mate maximum for the classification likelihood
EC’L(Hla ey 0G’7 gl, s agn | Y) = H f&(yz | 0&), (10)
i=1

where the ¢; are labels indicating a unique classification of each observation: ¢; = k if y;
belongs to the kth component. In the mixture likelihood (1), each component is weighted
by the probability that an observation belongs to that component. The presence of the class
labels in the classification likelihood (10) introduces a combinatorial aspect that makes exact
maximization impractical.

Murtagh and Raftery (1984) successfully applied model-based agglomerative hierarchical
clustering to problems in character recognition using a multivariate normal model parametrized
as in (3), with volume and shape (\; and Ay) held constant across clusters. This approach
was generalized by Banfield and Raftery (1993) to other models and applications, including
tissue segmentation in medical images.

Model-based agglomerative hierarchical clustering proceeds by successively merging pairs
of clusters corresponding to the greatest increase in the classification likelihood (10) among
all possible pairs. In the absence of any information about groupings, the procedure starts
by treating each observation as a singleton cluster. When the probability model in (10) is
multivariate normal with the uniform spherical covariance AI, the selection criterion is the

well-known sum-of-squares criterion (Ward 1963).

10



Other common heuristic clustering criteria, such as the single link (nearest neighbor),
complete link (farthest neighbor), and average link have no known associated statistical
model. However, there may be relationships that have yet to be uncovered. The criterion
underlying complete link clustering is close to, but not the same as, the classification likeli-
hood for a model in which each group is uniformly distributed on a hypersphere, with the
same radius for each group. The criterion underlying average link clustering has some simi-
larities with the classification likelihood for a model in which each group has a multivariate
isotropic Laplace distribution, with density f(y) o« exp{—|y — u|/c}. Further investigation
of such connections may provide insight into when complete link and average link clustering
are most likely to work well. They may also point to more fully model-based methods along
the same lines, as well as generalizations to nonisotropic settings, or situations in which the
groups differ markedly. The single link clustering method seems not to be related to a sta-
tistical model, and does not perform well in instances where clusters are not well separated
(e.g. Fraley and Raftery, 1998). However, nearest neighbor classification, the supervised
analogue of single link clustering, often works well for discriminant analysis.

In the heuristic methods, the computational cost of merging pairs of clusters remains
fixed as long as the clusters remain unchanged, and computational methods that store and
update these costs are much faster than alternatives, provided that sufficient memory is avail-
able. Many model-based methods can also be implemented in this way, although evaluating
the merge criterion can involve a relatively expensive computation such as a determinant
or an eigenvalue decomposition. Hierarchical agglomeration should be avoided with those
multivariate normal models such as constant variance for which there is no advantage in
storing the cost of merging pairs, unless an initial partition with a small number of groups is
available (an alternative model, such as the one with unconstrained variance, can be used in
these cases). Efficient numerical algorithms for agglomerative hierarchical clustering based

on (10) with multivariate normal models are discussed in Fraley (1998).

5.2 Combining Hierarchical Agglomeration, EM, and Bayes Fac-
tors

In hierarchical agglomeration, each stage of merging corresponds to a unique number of clus-
ters, and a unique partition of the data. A given partition can be transformed into indicator
variables (5), which can then be used as conditional probabilities in an M-step of EM for
parameter estimation, initializing an EM iteration. This, combined with Bayes factors as

approximated by BIC for model selection, yields a comprehensive clustering strategy:

e Determine a maximum number of clusters (M), and a set of mixture models to consider.
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e Perform hierarchical agglomeration to approximately maximize the classification likeli-

hood for each model, and obtain the corresponding classifications for up to M groups.

e Implement the EM algorithm for each model and each number of clusters 2,..., M,

starting with the classification from hierarchical agglomeration.

e Compute BIC for the one-cluster case for each model, and for the mixture model with

the optimal parameters from EM for 2,..., M clusters.

Strong evidence for a model and an associated number of clusters is taken to correspond to
a decisive maximum of the BIC.

Multivariate normal mixtures parametrized through eigenvalue decomposition as in (3)
represent a good set of models for clustering in many situations arising in practice. With
these models, computation can be saved by doing hierarchical agglomeration only for one
of the models (e.g. unconstrained covariance), using the resulting partitions as starting
values for EM with any other parametrization. This method for model-based clustering is

illustrated in the examples of Sections 8.1 and 8.2.

5.3 Modeling Noise and Outliers

Noise and outliers can often be handled in this framework by adding a term or terms to the
mixture to represent “nonconforming” data. A mixture in which one component models noise
as a homogeneous Poisson process has been used successfully in a number of applications
(Banfield and Raftery 1993; Dasgupta and Raftery 1998; Campbell et al. 1997, 1999). The
corresponding model is

n

LMIX(ela"'70G;7—077—17"'7TG | Y) :H

1=1

To

K
% + ZTka)k(Xz‘ | 0k) |, (11)
k=1

in which V' is the hypervolume of the data region, 7, > 0, and Z/?:o T = 1. Isolated outliers
can sometimes be treated by iterated sampling (e.g. Fayyad and Smyth 1996), in which
points of low probability are removed from clusters and the clustering/removal process is
repeated until all remaining observations have relatively high density. Alternatively, noise
can be modeled in mixtures via the ¢ distribution (Peel and McLachlan 2000).

When the data contain a great deal of noise, the basic model-based clustering method of

Section 5.2 needs to be modified as follows:

e Obtain an initial categorization of each observation as being “data” or “noise”. Some
possible methods for denoising include a Voronoi method (Allard and Fraley 1997) and
a nearest-neighbor method (Byers and Raftery 1998).
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e Apply hierarchical clustering to the denoised data.

e Apply EM based on the Gaussian model with the added noise term(s) to the entire data
set. Initial values for z; are formed by augmenting the indicator variables from the
hierarchical clustering step with a row of zeroes for each observation initially assessed
as being noise, and a column of indicator variables giving the result of the denoising

step (1 indicating noise; 0 otherwise).

An example of model-based clustering with very noisy data is given in Section 8.3.

6 Discriminant Analysis

6.1 Discriminant Analysis Background

In discriminant analysis, also known as supervised classification, known classifications of
some observations (the “training set”) are used to classify others (e.g. McLachlan 1992;
Ripley 1996). The number of classes, C, is assumed to be known.

Many discriminant analysis methods are probabilistic, based on the assumption that the
observations in the c-th class are generated by a probability distribution specific to that
class, f.(-). Then, if 7, is the proportion of members of the population that are in class c,
Bayes’s theorem says that the posterior probability that an observation y belongs to class ¢
is

Tefe(y)

Y1 Tefr(y)

Assigning y to the class to which it has the highest posterior probability of belonging mini-

Pr[y € Class ¢| =

mizes the expected misclassification rate; this is called the Bayes classifier.
Most commonly-used discriminant analysis methods are based on the assumption that

the observations in the cth class are multivariate normal, so that

fe(y) = o(ylpe Xe)- (12)

If the covariance matrices for the different classes are the same, i.e. ¥, =Y forc=1,...,C,
and if maximum likelihood estimates of y. and ¥ from training data are used, then the
(conditional) Bayes classifier is Fisher’s linear discriminant analysis (LDA) rule. In that case,
the classification rule is defined by whether or not a linear combination of the components of
y exceeds a threshold. This reduces the discrimination to a one-dimensional problem, and
produces a classification rule that is a simple thresholding. If the covariance matrices Y. are
allowed to differ without constraint, the resulting method is standard quadratic discriminant

analysis (QDA), in which the classification function is a quadratic form in the components

13



of y. The ideas discussed in this review allow the standard LDA and QDA to be extended

in several ways, described in more detail in the next two subsections.

6.2 Eigenvalue Decomposition Discriminant Analysis

Bensmail and Celeux (1996) imposed cross-group constraints on the class covariance matri-
ces in (12) for discriminant analysis, based on the parametrization by eigenvalue decompo-
sition (3) originally proposed for model-based clustering. This approach, called Eigenvalue
Decomposition Discriminant Analysis (EDDA), has the advantage of permitting more flex-
ibility than LDA, while at the same time allowing more structure than the unconstrained
model underlying QDA, which may have too many parameters to perform optimally. They
considered 14 possible models for the covariances based on (3), allowing the data to choose
between them using cross-validation. The best model could alternatively be chosen using
approximate Bayes factors, as we have proposed for clustering (Section 4), which would typ-
ically be less demanding computationally. Biernacki and Govaert (1999) compare a number
of different criteria, including BIC, in simulation studies of model-based clustering and dis-
criminant analysis. In a related but different context, Stanford and Raftery (2000) found
that BIC and cross-validation tended to choose similar models, with BIC requiring far less
computation.

A single EM iteration provides a simple way of assigning new observations to known
classes, so that the framework described earlier for model-based clustering can easily be
adapted for discriminant analysis. First an M-step is carried out for the appropriate model
with indicator variables corresponding to the known discrete labels of the training set as
starting values (5). This yields approximate parameters 6 and mixing proportions 7 for the
model (the mixing proportions can be treated separately if they are known in advance). Then
an E-step is computed for the new observations using the parameters from the “discrete”
M-step, to obtain the conditional probability that each new object belongs to each of the
possible groups in the mixture. An observation y; is assigned to the group for which it has
the highest conditional probability:

max G%jfz'(yz‘ 165) (13)
I Y Tefr(yi | k)

If the parameter estimates were replaced with the true parameters for the population, this

discriminant rule would correspond to the optimal Bayes rule.
A simple extension allows all of the data (training and new) to be taken into account
when estimating the parameters, even when the size of the training set is too small to

provide a basis for standard discriminant analysis techniques. The EM algorithm is applied
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as before to all the data, except that the Z;; for the training data are constrained to be 0 or

1 throughout the algorithm, reflecting the known group memberships.

6.3 Mixture Discriminant Analysis

An alternative model-based approach to generalizing LDA and QDA is to allow the density

for each class itself to be a mixture of normals, namely

GC
fc(y | ek) = ZTck¢(y | Heks Eclc)- (14)
k=1

This idea has been suggested a number of times in the literature (e.g. Scott 1992; McLachlan
1992), and is the basis of Mixture Discriminant Analysis or MDA (Hastie and Tibshirani
1996). In developing MDA, Hastie and Tibshirani made two assumptions: (¢) that all of the
component covariance matrices are the same, i.e. Y. = ¥ for each ¢, k; and (¢i) that the
number of mixture components is known in advance for each class. When Learning Vector
Quantization (Kohonen 1989) is used for initialization, however, only the total combined
number of mixture components for all classes needs to be specified at the outset. Hastie and
Tibshirani also proposed several extensions of the method under these assumptions. In a
similar approach, Ormoneit and Tresp (1998) use unconstrained mixtures with a fixed num-
ber of components, averaged over parameters estimated via EM with a number of different
random starting values.

MDA can also be extended by relaxing assumptions (i) and (¢4) and applying model-
based clustering to the members of each class in the training set. This would allow the
component covariance matrices to vary, both within and between classes, perhaps with some
cross-component, constraints. The data would then determine which parametrization of the
covariance matrix and which number of mixture components is best suited to each class. We
shall refer to this generalization of MDA as MclustDA.

The basic idea of the model-based discriminant analysis methods described here is to allow
more flexibility than is possible with the traditional methods, LDA and QDA. Friedman
(1989) had earlier proposed an approach to this problem called Regularized Discriminant
Analysis (RDA), which chooses a linear combination of the LDA and QDA models that
best fits the data. EDDA (Bensmail and Celeux 1996) provides a class of models that
are intermediate between LDA and QDA, while remaining geometrically or substantively
interpretable.

Mixture-based MDA and MclustDA further improve on EDDA by expanding the discrim-
inant model from a single Gaussian component to a mixture. In particular, this approach

allows close approximation of nonlinear and nonmonotonic classification boundaries. Under
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fairly weak conditions, a mixture model can approximate a given density arbitrarily closely
given enough components, allowing great flexibility. In MclustDA, the data choose both
the number of components in each class and the form of the covariance matrices, so that
the method could revert to LDA or QDA for some data sets, and use a large number of

components (and thus be almost “nonparametric”) for others.

7 Density Estimation

In density estimation, it is the value of the mixture likelihood at individual points that is of
interest, rather than the membership of the components, which is important in clustering or
discriminant analysis. Roeder and Wasserman (1997) used normal mixtures for univariate
density estimation, with BIC to determine the number of components. The model-based
clustering method of Section 5 can be viewed as leading to a multivariate extension of their
method, since the parameter estimates for the best model define a multivariate mixture
density for the data. However, the issue of choosing a probability model for the individual
components is less critical in one dimension and was not discussed by Roeder and Wasserman
(1997). In one dimension there are only two possible models (equal and unequal variance),
while many more models are possible in the multivariate case, so that the available set of
models and model selection procedures play a critical role in density estimation by multivari-
ate normal mixtures. Results of simulations for two-dimensional analogs of the univariate
mixtures from Marron and Wand (1992) that were studied in Roeder and Wasserman (1997)
are presented in Section 8.5, and some applications are illustrated in Sections 8.1.3 and 8.4.

An alternative approach to density estimation using normal mixtures models the nor-
mal parameters as coming from a Dirichlet process. This was proposed for one-dimensional
density estimation by Escobar and West (1995) and MacEachern and Miiller (1998), and ex-
tended to the multivariate case by Miiller, Erkanli and West (1996). Roeder and Wasserman
(1997) argued for directly selecting the number of components rather than modeling it using
a Dirichlet process on the grounds that the former allows direct control over the number of

components.

8 Examples

8.1 UCI Wisconsin Diagnostic Breast Cancer Data
8.1.1 Cluster Analysis

In widely publicized work (e.g. Mangasarian et al. 1995), 176 consecutive future cases were

successfully diagnosed from 569 instances through the use of linear programming techniques
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Figure 2: Pairs plots of the Wisconsin Diagnostic Breast Cancer Data from the UCI Machine
Learning Repository, showing only the 3 explanatory variables used by Mangasarian et al. (1995).
There are 569 observations.

to locate planes separating classes of data. Their results were based on 3 out of 30 attributes:
extreme area, extreme smoothness and mean texture. The three explanatory variables
were chosen via cross-validation comparing methods using all subsets of 2, 3, and 4 features
and 1 or 2 linear separating planes. Their training data is available from the UCI Machine
Learning Repository at

http://www.ics.uci.edu/AI/ML/MLDBRepository.html
The three variables of interest are shown in Figure 2.

Although for these data the diagnoses are available, we first applied cluster analysis to
the three attributes only, ignoring the “known” classifications. The model-based clustering
methodology outlined in Section 5 yields the results shown in Figure 3. The maximum BIC
value occurs for the 3-group unconstrained model; the difference in BIC values between the

2- and 3- group unconstrained models is close enough to conclude that there are either 2 or
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Figure 3: Cluster analysis of the Wisconsin Diagnostic Data reduced to the three explanatory
variables. (a) BIC values, excluding those for the two spherical models since they fall well below
the others. Models 3-6 correspond to ¥ (equal variance), ¥, (unconstrained), ADyAD} (common
shape and volume), and Ay Dy ADI (common shape), respectively. Model 4 is the best model. (b)
The 3-group unconstrained model-based classification of the data, showing the projections of the
ellipses defined by the covariance of each of the three groups. (c¢) Uncertainty in the 2-group model-
based classification (shown in Figure 1). Small dots correspond to observations with uncertainty
less than .1; open circles to those with uncertainty in the interval [.1,.25); filled circles to those with
uncertainty greater than or equal to .25. (d) Location of the misclassified observations (vertical
lines) relative to the uncertainties of all observations in the 2-group model-based classification.
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3 groups in the data (Figure 3a). The 2-group classification matches the clinical diagnosis
for all but 29 of the 569 observations (see Figure 1). Note that the most uncertain points
tend to fall in the same region between the two clusters as the misclassified data (Figure 3c¢),
while the location of uncertainty of the misclassified observations relative to the uncertainty
of all of the observations (Figure 3d) confirms that the more uncertain observations are also
the ones most likely to be misclassified.

Three groups are clinically important because it is necessary to have some idea of the
chance of malignancy in order to determine an appropriate course of action. Tumors of the
intermediate class would be followed up by biopsy under local anesthesia, while those likely

to be malignant would be followed up by a more invasive biopsy under general anesthesia.

8.1.2 Discriminant Analysis with One Gaussian Component per Group

According to the documentation for the Wisconsin Diagnostic Breast Cancer Data in the UCI
Machine Learning Repository, the classifier proposed in Mangasarian et al. (1995) correctly
diagnosed 176 consecutive new patients as of November 1995. Since only the training set is
available from the UCI repository, we obtained additional data for discriminant analysis from
Dr. William Wolberg, M.D., of the University of Wisconsin, the oncologist involved in the
original analysis of these data. Using parameter estimates generated via an M-step of EM
started from the known discrete classification of the UCI data (with two groups) model-based
discriminant analysis via (13) classified 280 new observations with 95.7% accuracy (Figure
1b). The model-based approach has the advantage over the linear programming method of
Mangasarian et al. (1995) that it generalizes easily to data in which more than two groups

are present, and that the groups need not be linearly separable.

8.1.3 Discriminant Analysis with a Mixture for Each Group

One application of density estimation is the computation of likelihood ratios for discriminant
analysis (e.g. Scott, 1992, chapter 9). A model is fitted to each of two sets of data known to
have different values of a particular characteristic, and the ratio of their densities is computed
over a range of values. When the model-based clustering methodology described here is used
for each class, this is an application of MclustDA, the generalization of mixture discriminant
analysis (Hastie and Tibshirani 1996) described in Section 6.3.

Contour and perspective plots of parametric and nonparametric likelihood ratio surfaces
for diseased vs. nondiseased observations from plasma lipid data are shown in Scott (1992),
p- 250-251. The parametric density estimate was obtained by fitting a single normal to each
of two sets of observations, while the nonparametric estimate is an average shifted histogram.

Scott considered only two possibilities: a completely parametric (multivariate normal) den-

19



sity, and a fully nonparametric approach via kernel density estimation. MclustDA includes a
single normal density as a special case, and will collapse down to that if the data do not war-
rant additional complexity. MclustDA can also be viewed as nonparametric, however, in the
sense that it can approximate complex densities arbitrarily closely by adding components.
In a similar calculation, we applied MclustDA to the UCI Wisconsion Diagnostic Breast
Cancer Data reduced to the two explanatory variables shown in the projections of Figure 1:
extreme area and mean texture, treating the malignant and benign observations sepa-
rately. A single ellipsoidal normal was obtained for the benign observations, and a mixture
of two unconstrained normals for the malignant ones. Contour and perspective plots of the
resulting parametric likelihood ratio surface are shown in Figure 4. This ratio of density
estimates captures the nonmonotonic nature of the likelihood ratio surface, while remaining

satisfactorily smooth.

8.2 Minefield Detection

The Coastal Battlefield Reconnaissance and Analysis (COBRA) program (Witherspoon et
al. 1995), developed by the U. S. Marine Corps, is intended to detect minefields in coastal
areas via aerial reconnaissance. Figure 5 is a pairs plot of the measured intensity for all
six bands of a COBRA reconnaissance image for each of 173 locations identified as possible
mines on the basis of acquired images. Only 35 of the locations corresponded to actual
mines; the other 138 were false positives. The goal here was to see if model-based clustering
could separate out the mines from the false positives based on the intensities, or at least
identify a group containing the mines, so as to reduce the number of false positives. In this
application, it is important to avoid false negatives (i.e. locations that actually are mines,
but that are identified as nonmines). Because of the considerable linear dependence among
the bands, we applied model-based clustering to the intensity measured in bands 1 and 6
only.

According to BIC, the best model is the 4-group nonconstant spherical model. In this
grouping, all 35 mines are confined to one group containing a total of 89 points. By con-
sidering only the 89 points in that group as possible mines, the number of false positives is

thus reduced by over 60% from 138 to 54, without introducing any false negatives.

8.3 Cluster Recovery from Noisy Data

We consider a problem in cluster recovery posed in Murtagh et al. (2000) that is based on
the problem of locating galaxies in a noisy astronomical image. The data consist of two
simulated two-dimensional Gaussian clusters with centers (64,64) and (190, 190), and with

standard deviations in the z and y directions respectively (10,20) and (18,10). There are
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Figure 4: Using MclustDA: Contour and perspective plots of a portion of the loglikelihood ra-

tio surface for two covariates of the UCI Wisconsin Breast Cancer Data obtained from density
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Figure 5: The six bands of a COBRA reconnaissance image.
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Figure 6: BIC for the COBRA minefield detection problem, using bands 1 and 6. Models 1 and 2
are Yp = AI (constant spherical), and Ayl (nonconstant spherical), while models 3-6 are as given
in Figure 3. The resulting classification reduced the number of false positives by more than 60 %
without introducing any false negatives.
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300 data points in the first of these clusters, and there are 250 in the second. Background
noise is provided by adding 10,000 points from a Poisson distribution.

The results for this cluster recovery problem are shown in Figure 7. The model-based
clustering strategy accurately determines the cluster means, although the clusters found are
smaller than the true clusters (and they contain some noise points located within the cluster
boundaries). A different threshold for determining the classification from the conditional
probabilities could be used, as illustrated in Figure 7d.

It should be noted that the method is sensitive to the value of V', the assumed volume
of the data region, in (11). Here it is clear that V is the area of the image; Banfield and
Raftery (1993) and Dasgupta and Raftery (1998) similarly used the volume of the smallest
hyperrectangle with sides parallel to the axes that contains all the data points. Other
possibilities include taking V' to be the smallest hyperrectangle with sides parallel to the
principal components of the data that contains all the data points, or using the volume of
the convex hull of the data (e.g. Bentley et al. 1993).

8.4 Spatial Density Estimation

As an illustration of density estimation with multivariate mixtures (Section 7), we consider
the density of the Lansing Woods maples (Gerrard 1969). Figure 8 shows the location of the
maples, the model-based classsification, the corresponding density, and a standard Gaussian
kernel density estimate. The BIC (Figure 8a) indicates that a nonuniform spherical model
with six groups is the best model among those available. The Gaussian kernel density esti-
mate (Figure 8d) was computed with the S+SpatialStats software (Kaluzny et al. 1998),
using a bandwidth estimated by cross-validation using the sm software of Bowman and Azza-
lini (1997). Some advantages of the model-based approach are that there are no bandwidth
parameters involved, and that it is easy to compute the density at points other than the

data points.

8.5 Simulation Study for Two-Dimensional Density Estimation

In this section, we give the results of simulations using two-dimensional analogs of the uni-
variate normal densities from Marron and Wand (1992) that were studied by Roeder and
Wasserman (1997). Figure 9 shows contour plots of the 10 densities used in the simultations.

Table 1 gives the average integrated mean squared error (MISE) for density estimation
via model-based clustering, as well as those for Gaussian kernel density estimation using
both the normal optimal bandwidth and cross-validated bandwidth, over 50 simulations for
each of the 10 models (250 data points). The results for Gaussian kernel density estimation

were obtained using the sm software of Bowman and Azzalini (1997). The numbers shown
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Figure 7: (a) An instance of the cluster recovery data, consisting of two Gaussian clusters with
a total of 550 points, and 10,000 noise points. (b) The Gaussian clusters. (c¢) The data after
20 nearest-neighbor denoising with NNclean. (d) BIC from model-based clustering. In model 5,
groups have equal shape and volumes. (e) Model-based classification. (f) Points with classification
uncertainty less than 0.1.
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Figure 8: Density estimation for the Lansing Woods maples. (a) BIC from model-based clustering.
The maximum-BIC model is a six-component nonuniform spherical mixture. (b) Model-based
classification, with circles indicating the circles defined by the estimated covariance of each of the
six groups. (c¢) Contours of the density as determined by model-based clustering, with the location
of the maples superimposed. (d) Contours of a standard Gaussian kernel density estimate with
bandwidth selected by cross-validation.

are the MISE for kernel density estimation divided by the MISE for model-based clustering,
for each of the two kernel methods. This provides a direct comparison between model-based
clustering and kernel estimation in each of the simulated situations. Only in one of the ten
simulated situations does kernel estimation outperform model-based clustering: the Claw
(Bart Simpson) density, which is the most complicated of the 10 densities studied.

Figure 10 shows the density used to generate the data, as well as each of the esti-
mated densities from model-based clustering, Gaussian kernel with optimal normal and

cross-validated bandwidths for one dataset simulated from the trimodal density.
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Table 1: MISE for Density Estimation via Model-Based Clustering (MBC), Gaussian Kernel Den-
sity Estimation with Normal Optimal Bandwdith (NOB), and Gaussian Kernel Density Estimation
with Cross-validated Bandwidth (CVB). The numbers shown are the ratios of the MISEs for NOB
and CVB respectively to that for MBC.

model | NOB/MBC | CVB/MBC |
Unimodal Gaussian 4.5 4.4
Skewed UniModal 2.2 1.9
Strongly Skewed 6.7 1.5
Kurtotic Unimodal 12.5 3.5
Outlier 14.9 4.6
Bimodal 4.2 3.6
Separated Bimodal 11.5 4.2
Asymmetric Bimodal 4.1 2.6
Trimodal 4.1 2.1
Claw (Bart Simpson) 1.8 0.7
Average 6.6 2.9

NOTE: For the Strongly Skewed model, the CVB result is averaged over 42 of the 50 replicates,
since in the remaining 8 instances, the cross-validated bandwidth could not be computed with
default parameters in the sm software.

9 Model-based Clustering Software

The MCLUST software (Fraley and Raftery 1999), implementing model-based clustering and
discriminant analysis as described this paper, is available through the Internet at
http://www.stat.washington.edu/fraley/mclust.
It is designed to interface with the commercial interactive software package S-PLUS!.
Other software packages for model-based clustering include EMMIX (McLachlan et al. 1999)
and AutoClass (Cheesman and Stutz 1995). Software for mixture discriminant analysis
(MDA) and some of its generalizations is also available (see Hastie and Tibshirania 1996). An
S-PLUS function implementing the nearest-neighbor denoising method (Byers and Raftery
1998) used in the example of Section 8.3 is available through StatLib at
http://1lib.stat.cmu.edu/S/nnclean.

10 Limitations and Extensions

To date, the clustering methods based on multivariate normal mixture models we have

described in this paper have been used with success in applications including minefield and

!MathSoft, Inc., Seattle, WA USA — http://www.mathsoft.com/splus
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seismic fault detection (Dasgupta and Raftery, 1998), identifying flaws in textiles from images
(Campbell et al.,1997, 1999), and the classification of astronomical data (Mukherjee et al.,
1998). However, their practical use without modification can be limited for non-Gaussian,

high-dimensional, or large data sets.

10.1 Non-Gaussian Data

Multivariate normal mixtures can accomodate data of varying structure. The component
distributions are concentrated around surfaces of lower dimension; for example a highly linear
distribution is concentrated around a line, which is the first principal component. Sometimes
clusters are concentrated around lower-dimensional manifolds that are not linear. A non-
Gaussian component can often be approximated by several Gaussian ones (e.g. Dasguspta
and Raftery 1998; Fraley and Raftery 1998). For example if one component is concentrated
about a nonlinear curve, it may be possible to provide a piecewise linear approximation,
which could be represented by several Gaussian clusters, each one concentrated about a
linear subspace. In the COBRA minefield example (Section 8.2), observations identified as
not being mines were located in several groups in the model-based classification, while the
true mines were confined to a single mixture component. An explicit approach to the problem
of clusters that are concentrated around nonlinear curves rather than lines is to model the
curves nonparametrically but smoothly using the concept of principal curves (Hastie and
Stuetzle 1989). This idea of clustering about principal curves was proposed and developed
by Banfield and Raftery (1992) and Stanford and Raftery (2000).

The model-based framework is flexible and need not be restricted to multivariate normal
mixtures. In the example of cluster recovery from noisy data (Section 8.3), the cluster
structure was recaptured by preprocessing the data to remove some of the noise in the
hierarchical clustering phase, and adding a Poisson term to the mixture to model the noise
in the EM phase. Other mixture models that have been applied in clustering and related
contexts include mixtures of ¢ distributions (Peel and McLachlan 2000), mixtures of trees
(Meila 1999), mixtures of first-order Markov chains (Cadez et al. 2000), and mixtures of
distributions for angular data (Peel et al. 2000).

Mixture models for multivariate discrete data, often called latent class models, have
been developed over a long period (Lazarsfeld 1950; Lazarsfeld and Henry 1968; Clogg
and Goodman 1984; Becker and Yang 1998), and could be used for clustering within the
framework described here. More recently, Chickering and Heckerman (1997) pointed out
that a finite mixture model is a graphical Markov model with a single hidden node. This has
opened up the possibility of applying the technology of graphical models and Bayes nets to

the clustering problem, particularly for high-dimensional discrete data of the kind that are
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generated, for example, by tracking visits to Web sites. Handling data in which attributes or
dimensions are of different kinds, e.g. discrete, ordinal, continuous and censored is currently

a major challenge for model-based clustering.

10.2 High-Dimensional Data

A limitation of model-based clustering with high-dimensional data is that the number of
parameters per component in multivariate normal mixtures that allow orientation to vary
between clusters grows as the square of the dimension of the data. Moreover, if the dimension
of the data is high relative to the number of observations, the covariance estimates in the
ellipsoidal models will often be singular, causing the EM algorithm to break down, although
the spherical and possibly diagonal models may still be applicable.

When the data are of high dimension, some sort of dimension reduction strategy is
inevitable. Sometimes correlations or other relationships among variables are evident, so
that selecting a subset of the variables with which to work is relatively easy, as for example
in the COBRA minefield detection problem of Section 8.2 or in the gamma ray bursts
analyzed in Mukherjee et al. (1998). Principal components are often used for dimension
reduction (e.g. Smyth 2000), but in some instances transforming the data into principal
components may obscure rather than reveal groupings of interest (Chang 1983). Recent
research has found that the wavelet transform is effective for dimension reduction in some
clustering applications (Murtagh et al. 2000).

Another approach to high-dimensional data is to replace the data by distances or dissim-
ilarities between data points. This is prevalent in applications such as document clustering
or information retrieval, where each dimension corresponds to a word or term that may or
may not appear in the document. Clustering methods that are not model-based have been
developed for this situation, and many hierarchical agglomerative methods can be adapted
to this problem. Model-based clustering can also be combined with multidimensional scal-
ing (e.g. DeSarbo et al. 1991). A satisfactory solution remains a major research challenge,
although new model-based multidimensional scaling techniques (e.g. Oh and Raftery 2000)
may help bring the benefits of model-based clustering to this setting.

10.3 Large Data Sets

One reason for the current explosion of interest in clustering is the desire to use it for finding
patterns in very large data sets, sometimes called “datamining”. Model-based clustering
as described in this paper does not scale to large data sets without modification. A major
limiting factor is that time-efficient methods for model-based hierarchical agglomeration

have initial memory requirements proportional to the square of the number of groups in
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the initial partition, which by default assigns each observation to a group with a single
element. Although in the default procedure there may not be adequate memory available for
processing large data sets, memory requirements can be reduced if some of the observations
can be grouped together in advance. Posse (2000) proposed the use of the minimum spanning
tree to obtain initial partitions for hierarchical agglomeration for large data sets.

When the sample size is moderately large, a general and simple approach is to take a
random sample of the data, and then apply model-based clustering to the sample. The
results are then extended to the full data set using discriminant analysis, with the sample
viewed as the training set, essentially basing inference on the sample rather than on the full
population. Banfield and Raftery (1993) applied this idea in segmenting an MRI image,
which they cast as a problem of clustering the 26,000 or so nonbackground pixels in the
image. They took an initial sample of only 500 pixels, clustered them, and then classified
the remaining 25,500 pixels on the basis of the results. With the methodology described here,
the discriminant analysis is straightforward: a final E-step is applied to the remaining data
to obtain conditional probabilities, using the parameter estimates derived from the sample.

The simple sampling strategy just described may break down when one is seeking small
groups in very large data sets. Small groups may not be represented at all in a sample, or else
they may have too few representatives to be distinguished as a cluster. Fayyad and Smyth
(1996) considered one such instance: finding a group of about 40 quasars in a catalog of about
two billion objects, which they solved by iterated sampling (see Section 5.3). The problem
could also be approached via a modification of the simple sampling method. One version
of this would be as follows. In the final E step from the simple sampling method, compute
fi = max;, fk(y,-\ék) for each observation 7 in the full data set. Select out the observations i
such that f; is below some threshold, i.e. those that are not well represented by any of the
clusters identified so far. Form a second sample, including all the poorly represented data
points identified, together with a stratified sample from the clusters that have been identified
(e.g. roughly equal numbers from each cluster). Apply model-based clustering to the new
sample, and apply the E step to the full sample as before. A final application of the M step
to the full sample might also be needed, especially to estimate the proportions 7. These
steps could be iterated until a stable solution is found.

So far we have discussed difficulties with moderately large datasets — large enough that
a set of interpoint distances cannot be held in memory, although the data can. Datamining is
often concerned with even larger datasets. The computation time for an EM iteration, which
depends only on the data dimension when the all of the data can easily be held in memory,
increases greatly when this is not the case. In this context, there has been considerable

work on computational techniques for making the EM algorithm more efficient when applied
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to large data sets (Bradley et al. 1998; Moore and Lee 1998; Moore 1999; Thiesson et al.
1999). One focus is the development of “one-pass” methods, in which each part of the
data needs to be loaded into memory only once. However, even with memory resources and
processor speeds large enough for handling massive data sets as a whole, numerical error due
to finite precision arithmetic would remain an obstacle. This limitation favors the traditional
approach we have mentioned, that of clustering a subset of the data for use as a training set,
and then applying a discriminant rule for classification.

A number of assumptions in the mixture modeling approach may be at odds with the
realities of massive data entities, so that straightforward application of the simple or iterated
sampling approach may not work well. First, it is assumed that the data come from a
mixture model and are present in the data collection in the appropriate proportions. Second,
it is assumed that somehow a training set can be selected from the data in the correct
proportions, which may be unrealistic for large out-of-core databases that cannot be sampled
randomly. Despite these apparent obstacles, model-based clustering seems to be emerging
as an important component within schemes for the classification of large data sets (Meila
1999; Posse 2000; Smyth 2000; Cadez et al. 2000).

10.4 Bayesian Estimation

In this review we have focused on frequentist estimation, mostly via maximum likelihood,
for the mixture models underlying model-based clustering. We have found approximate
Bayesian methods more useful for model selection, however. Some statisticians may wish
to use Bayesian methods for estimation too, for reasons of statistical principle, or because
informative prior information is available.

For other statisticians, we can think of three reasons why they might be interested in
adopting a Bayesian approach to estimation. The first, and probably most important from
a practical viewpoint, is that the EM algorithm for maximizing the likelihood can converge
to degenerate solutions with infinite likelihood, corresponding to small and/or highly linear
clusters. This also makes it difficult to identify small clusters, especially with the more
complex models. A Bayesian approach can alleviate this problem, by effectively smoothing
the likelihood so that its many uninteresting infinite spikes are removed.

The second reason has to do with interval estimation. There are many ways of calculating
approximate standard errors from the EM algorithm (e.g. McLachlan and Krishnan 1997,
chap. 4), and they can be combined with an assumption of approximate normality to obtain
approximate confidence intervals. However, one may want more precise estimation intervals,
and these can be obtained from a Bayesian approach.

The third reason has to do with the assessment of uncertainty in the posterior proba-
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bilities of belonging to groups. From the EM algorithm it is easy to calculate approximate
posterior probabilities conditional on the maximum likelihood estimators of the model pa-
rameters, and the error in doing this typically declines to zero quickly, at rate O(n~'/2).
However, because this ignores the uncertainty in the parameter estimates, it is likely to un-
derestimate the overall uncertainty, and so to bias estimated posterior probabilities towards
greater certainty, i.e. towards 0 or 1, albeit to an extent that declines to zero as sample size
increases.

The simplest Bayesian estimation approach is to use the EM algorithm to find the pos-
terior mode rather than the maximum likelihood estimator, as suggested by Dempster et
al. (1977). This is likely to go a long way towards alleviating the first and most important
of the three problems mentioned, although it will not solve the first two.

The problem of specifying the prior remains. If informative prior information is available,
this should be used. If not, it would be desirable to have an easy way of specifying a prior, and
standard reference priors do not seem to be directly applicable to the models considered here.
A unit information prior, either in the form proposed for testing by Kass and Wasserman
(1995), in the slightly different form given by Raftery (1995), or in a diagonal form with the
off-diagonal elements set to zero, may be useful for estimation also, as a kind of reference
prior. Raftery (1999) argued that such priors can provide a reasonable approximation to the
elicited prior of someone who knows something, but not much, about the problem at hand.
They also have the desirable property of being fairly flat over the part of parameter space
where the likelihood is substantial, without being much greater elsewhere. These priors are
proper, albeit mildly data-dependent, and have the desirable smoothing properties mentioned
earlier.

Recently there has been a great deal of work on Bayesian estimation of mixture models
using Markov chain Monte Carlo. The basic idea is to compute the joint posterior distribution
of the model parameters and the “missing data”, z, defined in the same way as in the EM
iteration. This is typically done by Gibbs sampling or random walk Metropolis-Hastings,
updating the components of the posterior distribution one at a time. Lavine and West
(1992) were the first to do this, using Gibbs sampling and applying the results to clustering
in the context of a mixture of multivariate normal distributions. They considered only the
model with unconstrained covariance matrices. (Working independently, Diebolt and Robert
(1994) applied Gibbs sampling to Bayesian estimation of a one-dimensional normal mixture
model.) Bensmail et al. (1997) extended these results to the full range of clustering models
considered here, and showed how the Bayesian method can be effective when there are very
small clusters, which would stump the frequentist approach.

Reversible jump MCMC (Green 1995) was an important development, and was applied to
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one-dimensional normal mixtures by Richardson and Green (1997). This allows the MCMC
sampler to move between different models as well as between different parameter values,
and hence to yield estimates of Bayes factors and posterior model probabilities directly.
Implementing this method seems somewhat challenging, however, and so far it has proved
difficult to apply it to multivariate mixtures such as those that arise in clustering. Castelloe
(1999) has succeeded in applying this approach to a two-dimensional model-based clustering
problem with particular constraints.

A major difficulty with Bayesian estimation of mixtures in general, and MCMC imple-
mentations of it in particular, is the label-switching problem, discussed, for example, by
Richardson and Green (1997). This arises because one can switch the labeling of the mix-
ture components without changing the likelihood. Since there are G! labellings, it follows
that there are G! components of the posterior distribution, which are identical except for
the labeling if the prior is symmetric with respect to labelings. This has various perverse
consequences: for example, the posterior means of the means of the mixture components
will all be the same.

Various solutions to the label-switching problem have been proposed. Early proposals
consisted of ordering the components a priori in some way (e.g. Celeux et al. 1996; Mengersen
and Robert 1996; Richardson and Green 1997), but this does not solve the problem in general.
Recent proposals to postprocess the MCMC output seem much more promising (Celeux 1998;
Celeux, Hurn and Robert 1999; Stephens 1997, 2000). These consist basically of clustering
the MCMC output itself according to the apparent labeling in operation, and then relabeling
the sampled parameters so that they all correspond to the same labeling. Proposed methods
for doing this include a k& means clustering algorithm, and a transportation algorithm for
optimization. One could imagine that the application of model-based clustering itself to this

“meta-problem” might be useful.
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